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In this paper, an approach for investigating vibration characteristics of piezoelectric
cylindrical shells under transverse vibration modes is presented. It is an extension of the
related work for elastic shells. A formula for estimating transverse frequencies of the
piezoelectric cylindrical shells is obtained. Because of its simplicity and clarity, the formula
can be used to investigate the in#uence of electromechanical coupling e!ect and geometry
parameters on the natural frequencies conveniently.
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1. INTRODUCTION

In recent years, micro-devices utilizing piezoelectric e!ects have been widely used in many
electromechanical applications. The performance of the devices usually depends on
dynamic behaviours of piezoelectric elements or structures signi"cantly, which have been
studied extensively in literature, see e.g. references [1, 2]. However, due to coupling e!ect
between electrical and mechanical "elds, the dynamic problems of piezoelectric structures
are more complicated than pure mechanical ones. Therefore, it is necessary to develop
simple and e!ective approximate methods for some piezoelectric dynamic problems in
engineering applications.

In the present paper, a simpli"ed method for estimating vibration characters of
a piezoelectric cylindrical shell is discussed. This study is introduced due to a research
concerning modelling on cylindrical ultrasonic micromotors. The principle of the motors is
to utilize the bending vibrations of a closed piezoelectric cylindrical shell under electric
power to drive moving piece through friction force [3]. Therefore, understanding the
vibration behaviours, such as natural frequencies and modes, of the cylindrical shell is very
important in the design of the micromotors.

Since transverse vibration of the piezoelectric cylindrical shell is especially interested in
the investigations, the approximate technique by Soedel [4, 5] for elastic cylindrical shells
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can be extended. This approach is to solve a Donnell}Mushtari}Vlasov-type equations [6]
by Galerkin method with general beam functions, and a simpli"cation is made that allows
various boundary condition cases to be written in terms of a single simple frequency
formula which incorporates the roots for the analogous beam problem. The expression of
the formula is simple and allows one to assess the various parameter in#uences on the
natural frequencies conveniently. Therefore, it is suitable for practical use in structure
designs. In this paper, the approach for the elastic shells is successfully extended to
piezoelectric problems, and related equations and formulations are derived and obtained.
To the best of the authors' knowledge, the results have not been reported in literature. It
provides an alternative simpli"ed method for the predication of dynamic behaviours of
piezoelectric shells.

2. GOVERNING EQUATIONS

A piezoelectric cylindrical shell is shown in Figure 1, where a, h and ¸ are respectively,
radius, thickness and length of the shell. The cylindrical shell can be de"ned by cylindrical
co-ordinate system with x-, h- and a

3
-axis, in which x de"nes the longitudinal direction

(length), h the circumferential direction, and a
3

the transverse direction. For the thin
piezoelectric shell polarized in radial direction, only electric "eld E

3
along thickness

direction is considered.
According to the assumptions, the electromechanical equations of the piezoelectric

cylindrical shell in u
x
, uh and u

3
displacements can be written as [2]
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Figure 1. A radially polarized piezoelectric circular cylindrical shell.
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The charge equation of electrostatics is given by
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where e
31

is the transverse piezoelectric constant, and e
33

the dielectric permittivity. With
Love's simpli"cations, the strain}displacement relations are written as
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In equation (1), mechanical membrane forces Nm
ij

and bending moments Mm
ij

are given by
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where K"Eh/(1!k2) is the membrane sti!ness, and D"Eh3/[12(1!k2)] the bending
sti!ness. By using equation (2), electric membrane forces Ne

ij
and bending moments Me

ij
can

be obtained as [2]

Ne
xx
"Nehh"!

e2
31

h

e
33

(S0
xx
#S0hh ), Me

xx
"Mehh"!

e2
31

I

e
33

(i
xx
#ihh ), (6)

where I"h3/12 is the area moment of inertia per unit.

3. DONNELL}MUSHTARI}VLASOV-TYPE EQUATIONS

In this section, the Donnell}Mushtari}Vlasov equations for elastic shells are extended to
piezoelectric ones. Based on the simpli"cations of the method [5, 6], the bending strains i

ij
in equation (4) and the equations of motion (1) can be reduced to
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Introduce a function / de"ned by
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By substituting these de"nitions into equation (8), it is found that the "rst two equations are
satis"ed and the third one becomes
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The second di!erential equation relating to the functions u
3
and / can be obtained from the

compatibility equation for a circular cylindrical shell [6]
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From equations (5), (6) and (9), we have
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Equations (10) and (14) are Donnell}Mushtari}Vlasov-type equations for piezoelectric
cylindrical shells, which can be reduced to the equations for elastic problems when
Ke"0.

By introducing static transverse electromechanical coupling coe$cient as
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we can de"ne generalized bending and membrane sti!ness appearing in equations (10) and
(14) as
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where mM
D

and mM
K

are non-dimensional parameters related to the coupling coe$cient k2
31

.
Therefore, the Donnell}Mushtari}Vlasov equations for piezoelectric shells can be further
written as
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It is seen that the Donnell}Mushtari}Vlasov equations for piezoelectric as well as elastic
shells can be expressed in uni"ed form. When the coupling coe$cient k2

31
is set to zero, the

di!erential equations (17) reduce to those for elastic shells.

4. NATURAL FREQUENCIES AND MODES

To obtain the natural frequencies and modes, all external mechanical and electric
excitations are set to be zero. It is assumed that the shell oscillates harmonically at a natural
frequency, i.e.,
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Substituting these expressions into equation (17) gives
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By eliminating U from the above equations, one obtains
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For vibration of circular cylindrical shells that are closed in the h direction, the solution
has the form
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where u is an arbitrary angle according to the fact that there is no preferential direction of
the mode shape in circumferential direction. Substituting expression (21) into equation (20)
gives

D*A
n2

a2
!

d2

dx2B
4
;

3m
(x)#

K*

a2

d4

dx4
;

3m
(x)!ohu2A

n2

a2
!

d2

dx2B
2
;

3m
(x)"0. (22)

This equation can be solved approximately by Galerkin's method [4, 5]. Following the
treatment in reference [4] by assuming ;

3m
(x) to be the mode shape of a transverse

vibration beam with boundary conditions analogous to the considered shell, the
approximate frequencies of the cylindrical shell can be obtained as
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where j
m

are the roots of the analogous beam equation For elastic cylindrical shells, it has
been veri"ed that under the selection of the beam functions, the results (23) are exact
solutions of equation (22) for the simply supported shell and approximate but with good
accuracy for other boundary condition cases [4, 5]. These results are also suitable for
piezoelectric shells due to the same type Donnell}Mushtari}Vlasov equations. Therefore,
equation (23) provides an alternative approach for estimating natural frequencies and
modes of piezoelectric cylindrical shells. Because of its simplicity and clarity, the expression
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can be used to investigate the in#uence of electromechanical coupling e!ect on the natural
frequencies conveniently.

De"ning non-dimensional parameters as
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equation (23) can be further written as
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is the non-dimensional frequency, and does not rely on the material modulus and density
explicitly. When coupling-e!ect-related parameters mM

D
"mM

K
"1, the above expression

reduces to the case for elastic shells.

5. NUMERICAL STUDIES

To illustrate the validity of the approximate solution (23) or (26), its results are compared
with the FEM solutions obtained from commercial "nite element package ABAQUS. Since
there is no piezoelectric shell elements in ABAQUS element library, solid elements are used
to model the cylinder geometry. For simplicity of element discretization, eigenvalue analysis
by FEM for axisymmetric vibration modes of the cylinder is performed to compare with the
approximate results, by setting n"0 in equation (23) or (26). Generally, the expression (23)
or (26) for nO0 can provide better approximations than that for n"0. Therefore, this
comparison is reasonable.

In FEM analysis, the cylinder is modeled as an axisymmetric structure utilizing 200
four-node axisymmetric bilinear elements. The comparisons of the results between FEM
and the formula (23) are given in Figures 2 and 3, respectively, for elastic cylinder and
piezoelectric cylinder. The geometry of the cylindrical shell is given as ¸"200 mm,
Figure 2. Comparison of approximate formula (23) with FEM solutions for free}free closed elastic cylindrical
shell. FEM; Eq. (23).



Figure 3. Comparison of approximate formula (23) with FEM solutions for free}free closed piezoelectric
cylindrical shell. FEM; Eq. (23).
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a"100 mm and h"2 mm. The material properties for the elastic and the piezoelectric
cylindrical shells are given, respectively, as

E"20)6]1010N/m2, o"7)85]10~9 kg/m3, k"0)3 for elastic shell,

E"8)13]1010N/m2, o"7)5]10~9 kg/m3, k"0)33,

e
31
"14)9 c/m2, e

33
"13)05]10~9 F/m for piezoelectric shell.

It is seen that the agreement of the approximate and FEM solutions for lower longitudinal
vibration modes is satisfactory for both elastic and piezoelectric shells. When the number of
the longitudinal vibration mode increases, the di!erence of the results between FEM and
the approximate formula is also increased. The frequencies by the approximate method are
higher than those obtained by FEM. It is partly due to the reason that the approximate
method provides extra restrictions on the structures through some assumptions and
therefore sti!ens the structures. Another possible reason is that in numerical, such as FEM,
eigenproblem analysis, lower order eigenvalues obtained are generally more accurate than
higher order ones. As it is known, lower order vibration modes and frequencies are most
interested in many engineering applications. Therefore, the results of the approximate
formula given in this paper are shown to be satisfactory compared with the numerical
solutions.

In this section, the non-dimensional frequency expression (26) is taken to investigate how
the electromechanical coupling e!ect as well as geometry parameters in#uence the natural
frequencies.

It can be observed from equation (16) that piezoelectric coupling coe$cients contribute
to the sti!ness constants and so increase the natural frequencies. Figures 4}6 show the
dependence of X1

mn
on the coupling coe$cient k2

31
and roots j1

m
for a clamped}clamped or

free}free piezoelectric cylindrical shell. The parameters are k"0)3, aN "0)5, and h1 "0)02. It
is seen that with increasing wave number n, the in#uence of the coupling e!ect upon
the natural frequencies also increases signi"cantly. Therefore, for higher vibration modes,
the in#uence of k2

31
cannot be neglected. Figures 7 and 8 show that the in#uences of the

geometry parameters aN and h1 on X1
mn

are di!erent. a6 only in#uences the frequencies of lower
order vibration modes while the in#uence of h1 is dramatic as n increases.

For the piezoelectric cylindrical ultrasonic motors, the vibration mode of n"1 and
m"1 is most interesting. Figures 9 and 10 show the frequency variations against the



Figure 4. Variations of X1
mn

due to changes of k2
31

, for j1
1
"4)73, k"0)3, a/¸"0)5, h/a"0)02.

Figure 5. Variations of X1
mn

due to changes of k2
31

, for j1
2
"7)85, k"0)3, a/¸"0)5, h/a"0)02.
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Figure 6. Variety of X1
mn

with j1
m

for free}free or clamped}clamped boundary conditions. k"0)3, k2
31
"0)4,

a/¸"0)5, h/a"0)02.

Figure 7. Variations of X1
mn

due to changes of a/¸, for j1
1
"4)73, k2

31
"0)3, k"0)3, h/a"0)02.
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Figure 8. Variations of X1
mn

due to changes of h/a, for j1
1
"4)73, k2

31
"0)3, k"0)3, a/¸"0)5.

Figure 9. Variety of X1
11

with a/¸, and k2
31

. k"0)3, n"1, h/a"0)02, j1
1
"4)73.
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Figure 10. Variety of X1
11

with h/a, and k2
31

. k"0)3, n"1, a/¸"0)02, j1
1
"4)73.
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parameters aN and h1 , respectively, due to the changes of the coupling coe$cient k2
31

. It
is noted that the in#uence of k2

31
on the frequencies is more sensitive with the parameter

h1 than aN .
Since the two ends of the piezoelectric cylinder are attached with two steel stators in the

cylindrical micromotor structures, the analogous beam can be modelled as a free beam
attached with the mass of the stator m

s
at each end. The eigenfrequency equation for this

beam can be obtained as

1!cos j1 cosh j1 #2mN 2j1 2 sin j1 sinh j1 !2mN j1 (cos j1 sinh j1 !sin j1 cosh j1 )"0, (27)

where mN "m
r
/m

c
is the non-dimensional mass ratio, and m

c
the mass of the piezoelectric

cylinder. From the equation, the mass ratio related eigenvalues, j1
m
, for di!erent modes can

be obtained. Figure 11 shows the dependence of the "rst order bending frequency X1
11

on
the mass ratio mN . It is observed that the in#uence of mN on X1

11
tends to be less signi"cant

when mN is larger than a certain amount for di!erent geometry parameters.

6. SUMMARY

Donnell}Mushtari}Vlasov-type equations for elastic shells were extended to the case for
piezoelectric shells. By introducing the so-called generalized bending and membrane
sti!ness, the Donnell}Mushtari}Vlasov equations for piezoelectric as well as elastic shells
can be expressed in uni"ed form. Following the treatment by Soedel [4], an approximate
formula for estimating transverse vibrating frequencies of closed circular cylindrical shells



Figure 11. Variety of X1
11

with mN , a/¸, and k2
31

. k"0)3, n"1, h/a"0)2, j1
1
"4)73.
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was obtained. Based on the formula, the in#uences of electromechanical coupling e!ect as
well as geometry parameters on the natural frequencies of cylindrical piezoelectric shells
with various boundary conditions were investigated.
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